99精品久久99久久久久,亚洲国产成人精品无码一区二区,国产精品亚洲综合色区韩国,久久精品第一国产久精国产宅男66,亚洲国产日韩欧美一区二区三区,久久久久久精品免费无码无,国产中年熟女高潮大集合,亚洲AV无码成H在线观看

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > New methods from material sciences in physics find their way

New methods from material sciences in physics find their way

 Date:

June 18, 2019
Source:
University of Copenhagen
Summary:

A new study on the behavior of water in cancer cells shows how methods usually limited to physics can be of great use in cancer research. The researchers have shown how a combination of neutron scattering and thermal analysis can be used to map the properties of water in breast cancer cells.

A new study on the behavior of water in cancer cells shows how methods usually limited to physics can be of great use in cancer research. The researchers, Murillo Longo Martins and Heloisa N. Bordallo at the Niels Bohr Institute, University of Copenhagen, have shown how advanced methods in materials analysis -- a combination of neutron scattering and thermal analysis -- can be used to map the properties of water in breast cancer cells. This pilot work shows how the mobility of water molecules confined in cancer cells changes when subjected to treatment with a chemotherapy drug. This proposed methodology holds potential for advance diseases diagnosis and might guide to the advancement of the approach used in cancer treatment, one of the biggest challenges in medical research. The result, now published in Scientific Reports, is exactly that.

Comparing cancer cells before and after treatment

When treating cancer with chemotherapy, the drug is usually inserted into the body via the bloodstream. Afterwards the medicament spreads to the entire system, making its way to the cancer cells. The effect of the drug depends on many, many factors. For example, the properties of intra cellular water are altered by the action of the drug. However the role of water in the development or remission of tumors is likely bigger than so far considered. This new perspective will be very instrumental in mapping the precise development, when comparing analysis before and after treatment.

Understanding water and its properties -- a common denominator for all cancer cells -- is vital

Water being the main component in the composition of the cell, understanding its properties, when undergoing treatment for cancer, is vital. Cancer cells respond differently to different kinds of treatment, so a new unorthodox analysis, using techniques from materials-sciences, of the cell's main component, its composition and behavior, could be a common denominator in developing new treatments for individual patients. Murillo Longo Martins, who has been working in this field during his PhD and postdoc at the Niels Bohr Institute, explains: "Our findings indicate that, in the future, drugs can be developed focusing on modifying the properties of cellular water to achieve specific outcomes. In a shorter term, understanding the dynamics of cellular water may provide complementary knowledge about, for example, why some types of cancers respond differently to certain treatments than others."

Unorthodoxy as a method

While physicians and biologists perceive cells as an ensemble of membranes, organelles, genes and other biological components, by combining sophisticated neutron scattering techniques and thermal analysis physicists are able to characterize water dynamics in the cell very precisely. Building a communication interface between these two distinct visions is now proven to be very interesting by the researchers at the Niels Bohr Institute. Their new results can open new areas of inquiry, because of the unorthodox approach. This result is expected to stimulate future collaborations between distinct scientific communities, and further incentivize the use of materials-science approaches when investigating biological matter.

Story Source:

Materials provided by University of CopenhagenNote: Content may be edited for style and length.


Journal Reference:

  1. Murillo L. Martins, Alexander B. Dinitzen, Eugene Mamontov, Svemir Rudi?, José E. M. Pereira, Rasmus Hartmann-Petersen, Kenneth W. Herwig, Heloisa N. Bordallo. Water dynamics in MCF-7 breast cancer cells: a neutron scattering descriptive studyScientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45056-8
全南县| 砚山县| 民县| 金寨县| 亳州市| 闸北区| 江陵县| 九龙城区| 五指山市| 奇台县| 乐清市| 朝阳区| 贡嘎县| 巢湖市| 托里县| 奉节县| 绩溪县| 榕江县| 鸡西市| 昌都县| 荃湾区| 汨罗市| 公主岭市| 河西区| 班戈县| 白朗县| 巨野县| 肥东县| 祁门县| 泗水县| 岫岩| 南乐县| 弥勒县| 日照市| 大连市| 白玉县| 九江市| 海南省| 沙田区| 海原县| 金沙县|